Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Anwar Usman, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a* }}$ Tushar S. Basu Baul ${ }^{\text {b }}$ and Pradip C. Paul ${ }^{\text {c }}$
${ }^{\text {ax }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {b }}$ Department of Chemistry, North-
Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 003, India, and ${ }^{\text {c }}$ Department of Chemistry, St. Anthony's College, Shillong 793 003, India

Correspondence e-mail: hkfun@usm.my

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.052$
$w R$ factor $=0.123$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

# Aqua[\{[2-(2-hydroxyphenyl)ethylidene]amino\}acetato]copper(II) monohydrate 

In the crystal structure of the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the Cu atom is tetracoordinated by O and N atoms, and facilitates an intermolecular $\mathrm{Cu} \cdots \mathrm{O}$ short contact of 2.809 (3) Å. The two symmetrically-related coordinated Cu ions form distorted square pyramids of coordination $\mathrm{CuO}_{4} \mathrm{~N}$. In the asymmetric unit, a free water molecule is hydrogen bonded to the coordinated water molecule. In the packing, the molecules are interconnected by two types of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## Comment

Considerable attention has been paid to the structures of Cu complexes with Schiff bases formed from salicylaldehydeamino acid (Ueki et al., 1967, 1969; Bkouche-Waksman et al., 1988). These complexes are expected to be catalytic intermediates in non-enzymatic transamination reactions (Eichhorn \& Marchand, 1956; Longenecker \& Snell, 1957). Recently, X-ray structural studies on tin complexes with such ligands exhibited a variety of coordination and bonding for the tin ${ }^{\text {IV }}$ ion (Dakternieks et al., 1998; Basu Baul et al., 1999, 2001, 2002). The usefulness of such systems has, in turn, prompted research into the chemistry of Cu , since the bond distances involving the N atoms are of interest. In this study, we report the X-ray structural analysis of the title complex, (I).

(I)

The asymmetric unit comprises a ligand-coordinated $\mathrm{Cu}^{\mathrm{II}}$ cation, a coordinated water molecule, and a free water molecule. The Cu atom is tetracoordinated by two O atoms and one N atom from the $O, N, O$-tridentate ligand and by one O atom of a water molecule. The $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond distances are in the range 1.881 (3) -1.959 (3) $\AA$, in agreement with reported values $[1.892$ (2)-1.993 (2) $\AA$; Warda, 1997a,b; Warda et al., 1997; Warda, 1998a,b)]. Atom Cu1 also facilitates an intermolecular $\mathrm{Cu} \cdots \mathrm{O}^{1}{ }^{i}$ short contact (Table 1), giving a distorted square pyramidal $\mathrm{CuO}_{4} \mathrm{~N}$ coordination with $\mathrm{O}^{1}{ }^{\mathrm{i}}$ occupying the apical position. The basal plane is formed by $\mathrm{Cu} 1 / \mathrm{O} 1 / \mathrm{N} 1 / \mathrm{O} 3 / \mathrm{O} 1 W$. The bond angles around Cu 1 are listed in Table 1.

Received 2 June 2003
Accepted 3 June 2003
Online 17 June 2003

Figure 1


The asymmetric unit of the title compound (I), showing $50 \%$ probability displacement ellipsoids and the atom-numbering scheme.


Figure 2
Packing diagram of (I), showing the links via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

The ligand and the atom Cu 1 form two nearly planar rings, one five-membered [ring $A$ : $\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1 ; Q_{2}$ puckering amplitude (Cremer \& Pople, 1975) 0.090 (5) Å] and the other six-membered [ring $B: \mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-$ $\mathrm{N} 1 ; Q_{T}$ puckering amplitude 0.184 (4) $\AA$ A . These two rings adopt envelope conformations, with atoms C 8 and Cu 1 deviating by 0.134 (1) $\AA$ and 0.222 (1) $\AA$ from the $\mathrm{N} 1 / \mathrm{Cu} 1 / \mathrm{O} 3 /$ C 9 and $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 1$ planes, respectively. The sixmembered, five-membered and aromatic $(C)$ rings are nearly coplanar, with ring $B$ making dihedral angles of $7.1(2)^{\circ}$ and 4.8 (2) ${ }^{\circ}$ with $A$ and $C$, respectively.

In the asymmetric unit, the $\mathrm{Cu}^{\text {II }}$ complex cation and the free water molecule are interconnected by $\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2 W$ hydrogen bonds. In the crystal packing, the two water molecules also play an important role in the intermolecular hydrogen-bonding scheme, in which there are two types of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds, viz. $\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 3^{\mathrm{i}}$ and $\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 2^{\text {ii }}$ (Table 2 and Fig. 2). Two molecules are interconnected by the two intermolecular hydrogen bonds into molecular chains.

## Experimental

A methanolic solution of potassium ((2-(2-hydroxyphenyl)ethylidene)amino)acetate (Dakternieks et al., 1998) was added dropwise to a stirred aqueous solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ containing a few
drops of acetic acid (1:1). The filtered solution, upon slow evaporation, afforded green crystals of the title compound (I). M.p. 520 (1) K, analysis found: C $41.27, \mathrm{H} .4 .47, \mathrm{~N} 4.80 \%$; calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{Cu}$ : C 41.31, H. 4.51, N $4.82 \%$; IR (KBr): $1630 \nu(\mathrm{OCO}), 1599 \nu(\mathrm{C}=\mathrm{N}), 1237$ $\nu[\mathrm{Ph}(\mathrm{C}=\mathrm{O})]$.

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4}\right)\right] \mathrm{H}_{2} \mathrm{O}$
$D_{x}=1.759 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=290.75$
Monoclinic, C2/c
$a=20.2250$ (3) A
$b=10.6741$ (3) $\AA$
$c=14.2089$ ( 3 ) $\AA$
$\beta=134.294$ (1) ${ }^{\circ}$
$V=2195.59(9) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 3297 reflections
$\theta=2.8-28.3^{\circ}$
$\mu=2.00 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, green
$0.20 \times 0.12 \times 0.10 \mathrm{~mm}$

## Data collection

Siemens SMART CCD area-
detector diffractometer
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.691, T_{\text {max }}=0.825$
7657 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.123$
$S=0.95$
2718 reflections
163 parameters

> 2718 independent reflections 1739 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.080$
> $\theta_{\max }=28.3^{\circ}$
> $h=-26 \rightarrow 20$
> $k=-12 \rightarrow 14$
> $l=-14 \rightarrow 18$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0475 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.97 \mathrm{e}^{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.73 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Cu} 1-\mathrm{O} 1$ | $1.881(3)$ | $\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~W}$ | $1.959(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Cu} 1-\mathrm{N} 1$ | $1.936(3)$ | $\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $2.809(3)$ |
| $\mathrm{Cu} 1-\mathrm{O} 3$ | $1.948(3)$ |  |  |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ | $93.9(1)$ | $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1 W$ | $88.6(1)$ |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$ | $179.0(1)$ | $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $78.3(1)$ |
| $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$ | $86.0(1)$ | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $101.4(2)$ |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1 W$ | $91.7(1)$ | $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $100.8(2)$ |
| $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1 W$ | $170.9(1)$ | $\mathrm{O} 1 W-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $86.7(1)$ |

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 $W-\mathrm{H} 1 W 1 \cdots$ O2W | $1.02(9)$ | $1.65(9)$ | $2.649(9)$ | $164(7)$ |
| O1 $^{2} W-\mathrm{H} 2 W 1 \cdots$ O3 $^{\text {ii }}$ | $0.83(7)$ | $2.02(7)$ | $2.850(8)$ | $172(6)$ |
| O2 $^{2} W-\mathrm{H} 2 W 2 \cdots$ O2 $^{\text {iii }}$ | 1.04 | 1.82 | $2.838(5)$ | 166 |

Symmetry codes: (ii) $-x, 1-y, 1-z$; (iii) $x, 1-y, z-\frac{1}{2}$.

All H atoms attached to C were positioned geometrically, with $\mathrm{C}-$ H 0.93-0.97 A. Though the H atoms attached to O1 $W$ were calculated and refined isotropically, with $\mathrm{O} W-\mathrm{H} 0.84$ (6)-1.02 (7) $\AA$, those attached to $\mathrm{O} 2 W$ were located in a difference map, with $\mathrm{O} W-\mathrm{H}$ $1.04 \AA$ and treated as riding atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine
structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 304/ PFIZIK/670011, and AU thanks Universiti Sains Malaysia for a Visiting Post-Doctoral Fellowship. The financial support of the Department of Science \& Technology, New Delhi, India (grant No. SP/S1/F26/99, TSBB) is gratefully acknowledged.

## References

Basu Baul, T. S., Dutta, S., Rivarola, E., Butcher, R. \& Smith, F. E. (2002). J. Organomet. Chem. 654, 100-108.
Basu Baul, T. S., Dutta, S., Rivarola, E., Scopelliti, M. \& Chaudhuri, S. (2001). Appl. Organomet. Chem. 15, 947-953.
Basu Baul, T. S., Dutta, S. \& Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 361362.

Bkouche-Waksman, L., Barbe, J. M. \& Kvic, A. (1988). Acta Cryst. B44, 595601.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dakternieks, D., Basu Baul, T. S., Dutta, S. \& Tiekink, E. R. T. (1998). Organometallics, 17, 3058-3062.
Eichhorn, G. L. \& Marchand, N. D. (1956). J. Am. Chem. Soc. 78, 2688-2691.
Longenecker, J. B. \& Snell, E. E. (1957). J. Am. Chem. Soc. 79, 142-145.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 870-878.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1969). Acta Cryst. B25, 328335.

Warda, S. A. (1997a). Acta Cryst. C53, 1588-1590.
Warda, S. A. (1997b). Acta Cryst. C53, 1590-1593.
Warda, S. A. (1998a). Acta Cryst. C54, 189-191.
Warda, S. A. (1998b). Acta Cryst. C54, 302-304.
Warda, S. A., Friebel, C., Sivý, J., Plesch, G. \& Báhová, M. (1997). Acta Cryst. C53, 50-54.

